Translate

Monday, 11 August 2014

                             Biofertilizer


Tolypothrix, cyanobacteria often used as fertilizer
Blue-green algae cultured in specific media. Blue-green algae can be helpful in agriculture as they have the -green algae is used as a bio-fertilizer.
biofertilizer (also bio-fertilizer) is a substance which contains living microorganisms which, when applied to seed, plant surfaces, or soil, colonizes the rhizosphere or the interior of the plant and promotes growth by increasing the supply or availability of primary nutrients to the host plant.[1] Bio-fertilizers add nutrients through the natural processes of nitrogen fixation, solubilizing phosphorus, and stimulating plant growth through the synthesis of growth-promoting substances. Bio-fertilizers can be expected to reduce the use of chemical fertilizers andpesticides. The microorganisms in bio-fertilizers restore the soil's natural nutrient cycle and build soil organic matter. Through the use of bio-fertilizers, healthy plants can be grown, while enhancing the sustainability and the health of the soil. Since they play several roles, a preferred scientific term for such beneficial bacteria is "plant-growth promoting rhizobacteria" (PGPR). Therefore, they are extremely advantageous in enriching soil fertility and fulfilling plant nutrient requirements by supplying the organic nutrients through microorganism and their byproducts. Hence, bio-fertilizers do not contain any chemicals which are harmful to the living soil.
Bio-fertilizers provide eco-friendly organic agro-input and are more cost-effective than chemical fertilizers. Bio-fertilizers such as Rhizobium,Azotobacter, [[[Azospirillum_brasilense|Azospirilium]]] and blue green algae (BGA) have been in use a long time. Rhizobiuminoculant is used for leguminous crops. Azotobacter can be used with crops like wheatmaizemustardcotton, potato and other vegetable crops.Azospirillum inoculations are recommended mainly for sorghummilletsmaizesugarcane and wheat. Blue green algae belonging to a general cyanobacteria genusNostoc or Anabaena or Tolypothrix or Aulosira, fix atmospheric nitrogen and are used as inoculations for paddy crop grown both under upland and low-land conditions. Anabaena in association with water fern Azolla contributes nitrogen up to 60 kg/ha/season and also enriches soils with organic matter.[2]
Other types of bacteria, so-called phosphate-solubilizing bacteria, such as Pantoea agglomerans strain P5 or Pseudomonas putida strain P13,[3] are able to solubilize the insoluble phosphate from organic and inorganic phosphate sources.[4] In fact, due to immobilization of phosphate by mineral ions such as FeAl and Ca or organic acids, the rate of available phosphate (Pi) in soil is well below plant needs. In addition, chemical Pi fertilizers are also immobilized in the soil, immediately, so that less than 20 percent of added fertilizer is absorbed by plants. Therefore, reduction in Pi resources, on one hand, and environmental pollutions resulting from both production and applications of chemical Pi fertilizer, on the other hand, have already demanded the use of new generation of phosphate fertilizers globally known asphosphate-solubilizing bacteria or phosphate bio-fertilizers.[citation needed]

No comments:

Post a Comment